Main Logo
Logo

Society for Pediatric Radiology – Poster Archive

  500
  0
  0
 
 


Final ID: Poster #: SCI-008

Using Artificial Intelligence to Interpret Pneumonia CXR (chest X ray) Findings in Children with a Phone Application Platform

Purpose or Case Report: CXR is the most common imaging method to diagnose pneumonia in children in limited-resource settings. There is a need to simplify and expedite its interpretation. By using a machine learning model to first classify and interpret the pneumonia images and then incorporate those characteristic imaging findings patterns into a simulated mobile app, health care workers can use their mobile devices to interpret those findings based on preloaded images built into their mobile devices corresponding to pneumonia.
Methods & Materials: We used 6543 CXR images from the PERCH (Pneumonia Etiology Research for Child Health) project containing findings compatible with pneumonia as a background to train a model to identify abnormal findings in children 0-59 months. The model was created using a ResNet-50 convolutional neural network to classify the images. A modified version of the network was trained using images from the database. This model was optimized for mobile deployment using the Tensor Flow Lite Task Library and integrated on a simulated mobile application, which allows for pneumonia findings detected from a CXR image to be identified through the phone’s camera. The model containing the already created patterns to recognize pneumonia can be incorporated into a real mobile device application.
Results: The model achieved 91.12% accuracy, 90.7% specificity and 96.0% sensitivity to detect pneumonia findings present in the CXRs. This performance was further tested by placing CXRs in the android device simulated environment to test probable real world camera usage behaviors.
Conclusions: Accurate interpretation of CXR findings compatible with pneumonia in children is a challenge in limited-resource settings. Expediting the process of such interpretation to diagnose pneumonia efficiently and on time can be done with a sensitivity of 96.0% by incorporating previously loaded artificial intelligence recognition patterns from previously done CXRs into a mobile phone app.
  • Thompson, Russell  ( Worcester Polytechnic Institute , Worcester , Massachusetts , United States )
  • Pieciak, Rachel  ( Boston University , Boston , Massachusetts , United States )
  • Gill, Christopher  ( Boston University , Boston , Massachusetts , United States )
  • Li, Jason  ( Boston University , Boston , Massachusetts , United States )
  • Wang, Kaihong  ( Boston University , Boston , Massachusetts , United States )
  • Etter, Lauren  ( Boston University , Boston , Massachusetts , United States )
  • Camelo, Ingrid  ( University of Massachusetts Medical School , Springfield , Massachusetts , United States )
  • Castro-aragon, Ilse  ( Boston Medical Center , Boston , Massachusetts , United States )
  • Setty, Bindu  ( Boston Medical Center , Boston , Massachusetts , United States )
  • Chang, Hailey  ( Boston Medical Center , Boston , Massachusetts , United States )
  • Betke, Margaret  ( Boston Medical Center , Boston , Massachusetts , United States )
Session Info:

Posters - Scientific

Informatics, Education, QI, or Healthcare Policy

SPR Posters - Scientific

More abstracts on this topic:
Applications of Artificial Intelligence in Magnetic Resonance Imaging of Primary Pediatric Cancers: A Scoping Review and CLAIM Score Assessment

Tsang Brian, Gupta Aaryan, Takahashi Marcelo, Ola Tolulope, Baffi Henrique, Doria Andrea

How to Interpret Research Papers in Artificial Intelligence (What Pediatric Radiologists Need to Know)

Rafful Patricia, Alkhulaifat Dana, Lopez Rippe Julian, Khalkhali Vahid, Welsh Michael, Venkatakrishna Shyam Sunder, Wieczkowski Sydney, Reid Janet, Sotardi Susan

More abstracts from these authors:
Point-of-Care Ultrasound for the Diagnosis of Pediatric Lung Disease

Chang Hailey, Gill Christopher, Setty Bindu, Castro-aragon Ilse, Camelo Ingrid, Etter Lauren, Pieciak Rachel, Thompson Russell, Wang Kaihong, Li Jason

Artificial intelligence-based Brightness Profiles Pattern Recognition to Detect Pediatric Pneumonia from Lung Ultrasound Images

Li Jason, Betke Margaret, Gill Christopher, Thompson Russell, Wang Kaihong, Etter Lauren, Camelo Ingrid, Chang Hailey, Setty Bindu, Castro Ilse, Pieciak Rachel

Preview
Poster____SCI-008.pdf
You have to be authorized to contact abstract author. Please, Login or Signup.

Please note that this is a separate login, not connected with your credentials used for the SPR main website.

Not Available

Comments

We encourage you to join the discussion by posting your comments and questions below.

Presenters will be notified of your post so that they can respond as appropriate.

This discussion platform is provided to foster engagement, and stimulate conversation and knowledge sharing.

Please click here to review the full terms and conditions for engaging in the discussion, including refraining from product promotion and non-constructive feedback.

 

You have to be authorized to post a comment. Please, Login or Signup.

Please note that this is a separate login, not connected with your credentials used for the SPR main website.


   Rate this abstract  (Maximum characters: 500)