MRI is crucial to the diagnosis, treatment planning, and monitoring of pediatric posterior fossa tumors; recent advances in machine and deep learning offer the prospect of increased diagnostic accuracy and minimally invasive management strategies. Machine learning and deep learning represent two artificial intelligence (AI) applications of radiomics that show promising results in the identification and classification of pediatric posterior fossa tumors, such as medulloblastoma, diffuse intrinsic pontine glioma, ependymoma, and pilocytic astrocytoma, based on MRI data. Many AI models demonstrate comparable, or in some cases, better, performance than human radiologists. Beyond diagnosis, machine and deep learning algorithms have been developed for tumor histology determination, prognostication, and molecular subtyping, to name just a few examples. In its early stages, however, the technology has several barriers to overcome before mainstream use. Studies of AI algorithms are often conducted with small sample sizes due to the relative rarity of pediatric posterior fossa tumors; many are also conducted at a single institution. Algorithms are susceptible to class imbalance as well, making it more difficult to identify tumors with lower prevalence. Multi-institution studies are important in addressing those limitations, though they have their own cumbersome requirements, such as data harmonization. Deep learning training strategies, such as federated learning, data augmentation, and transfer learning, help to address the problems introduced by working with small data sets. The purpose of this exhibit is to review the methods, results, and limitations identified in studies testing the efficacy of machine and deep learning models for the identification and classification of pediatric posterior fossa tumors and to discuss their potential for use in the clinical setting.
Read More
Meeting name:
SPR 2024 Annual Meeting & Postgraduate Course
, 2024
Authors:
Randhawa Hari,
Park Brandon,
Khanna Praneet,
Jung Daniel,
Das Ayushman,
Ginn Kevin,
Mitchell Grace
Keywords:
Artificial Intelligence,
Deep Learning,
Machine Learning