Main Logo
Logo

Society for Pediatric Radiology – Poster Archive


Elizabeth Silvestro

Is this you? Register and claim your profile. Then, you can add your biography and additional Information.

Showing 2 Abstracts.

Risk stratification of the most common pediatric primary liver malignancies, hepatoblastoma and hepatocellular carcinoma, is dependent on imaging criteria that ultimately inform work-up and clinical management. The Pediatric Liver Reporting and Data System (LI-RADS) Working Group recommends use of the PRETEXT (PRE-Treatment EXTent of tumor) staging system, which is utilized in the ongoing Pediatric International Tumor Trial (1). PRETEXT staging is first performed by dividing the liver into four sections. Based on how many contiguous sections are free of tumor, a group is assigned from I-IV. Second, annotations factors are assessed depending on the presence of vessel involvement, rupture, multifocality, extrahepatic spread, or metastatic disease, which portend higher risk (2). Understanding and applying the PRETEXT system should be a core competency for all current and aspiring pediatric radiologists. The PRETEXT system has some barriers to learning, namely in discerning the anatomical liver sections from the functional ‘Couinaud’ segments and accurately determining vessel involvement. We saw the opportunity to combine our diagnostic pediatric radiologic experience/expertise with the application of 3D printing technology. Through the segmentation of post-contrast T1 fat-saturated MRI images, we were able to build 3D models of different PRETEXT stage disease. The aim of this educational exhibit is to provide pediatric radiologists with an alternative learning tool to appreciate the PRETEXT system and its application. It will combine the proficiency of a 3D pediatric additive manufacturing lab and diagnostic pediatric radiologists with expertise in oncologic imaging and fellowship teaching. Models and their representative 3D renderings will demonstrate the differences between PRETEXT stages, with and without the presence of various annotation factors. 1. Schooler GR, Squires JH, Alazraki A, Chavhan GB, Chernyak V, Davis JT, et al. Pediatric Hepatoblastoma, Hepatocellular Carcinoma, and Other Hepatic Neoplasms: Consensus Imaging Recommendations from American College of Radiology Pediatric Liver Reporting and Data System (LI-RADS) Working Group. Radiology. 2020 Sep;296(3):493–7. 2. Towbin AJ, Meyers RL, Woodley H, Miyazaki O, Weldon CB, Morland B, et al. 2017 PRETEXT: radiologic staging system for primary hepatic malignancies of childhood revised for the Paediatric Hepatic International Tumour Trial (PHITT). Pediatr Radiol. 2018 Apr;48(4):536–54. Read More

Meeting name: SPR 2023 Annual Meeting & Postgraduate Course , 2023

Authors: Schoeman Sean, Venkatakrishna Shyam Sunder, Silvestro Elizabeth, Cajigas-loyola Stephanie, Acord Michael

Keywords: PRETEXT Staging, 3D Printing, MRI

Teaching fluoroscopy skills remains an ongoing challenge in pediatric radiology education. Radiologists must be competent to perform a wide range of fluoroscopy procedures and are often required to teach these clinical skills to their peers, junior staff, and students. Teaching procedural skills through frameworks, observation, and feedback, with opportunities for repeated practice, assists in the learner’s acquisition and retention of skills. Fluoroscopy presents patient safety and ethical challenges as “practicing” this skill on patients requires ionizing radiation exposure and often invasive procedures. Through this educational exhibit, we describe a proposed program to improve skill performance, determine competency, and provide feedback. To improve voiding cystourethrogram (VCUG) training two patient models were created for bladder catheterization with different grades of vesicoureteral reflux using 3D printing and silicon rubber. Additional educational materials, including videos and graphical representations, were created to better help the learner understand the steps of the VCUG protocol. A three-component curriculum included 1) Knowledge (indications, contraindications, complications); 2) Communication (with patient and family, with fluoroscopy team); and 3) Performance of the skill (preparation before commencing, steps and dexterity, immediate aftercare of the patient). We modeled our evaluation of the learner from Peyton’s four-step approach to skills teaching (Demonstration, Deconstruction, Formulation, and Performance) to teach the physical performance of the fluoroscopy procedure. Feedback was provided to the learners using the Pendleton Feedback Model. Finally, competency was assessed using the Framework for clinical assessment developed by Miller. This educational exhibit aims to provide radiologists in training with an alternative learning curriculum to better understand and evaluate the steps of the VCUG and its performance on patients in a simulated setting before being performed on patients. Read More

Meeting name: SPR 2024 Annual Meeting & Postgraduate Course , 2024

Authors: Veselis Clinton, Venkatakrishna Shyam Sunder, Silvestro Elizabeth, Bennett Brittany, Srinivasan Abhay, Acord Michael, Sze Raymond, Reid Janet, Anupindi Sudha

Keywords: Voiding cystourethrogram, VCUG, Fluoroscopy